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Problem 1

The picture below shows a variant of a famous paradoxical puzzle. On the left, we take two

rectangles of area 60, and cut each one into two pieces. On the right, we rearrange the four

pieces, and put them together into a single rectangle of area 119. How could this be?

(a) Explain what’s wrong. (Similar paradoxes can be found under names such as “Chess-

board paradox” or “Missing square puzzle”. It’s fine to look at a source that explains

such a paradox, provided you cite it—and explain it in your own words.)

Solution: We can start by examining the slopes of the line segments that seem to lay

on the ”diagonal” of the large rectangle. The slope of the line segments that are part of

the trapezoids is −2
5

and the slope of the line segments that are part of the triangles is
−5
12
. This shows that the ”diagonal” is in fact four distinct lines instead of what appears

to be one, creating a parallelogram shaped space, with the line segments making up

the ”diagonal” as the sides of the parallelogram.

WLOG let the bottom left vertex be (0, 0), the top left vertex be (0, 7), the bottom

right vertex be (12, 0) and the top right vertex be (12, 7). We can examine the halves

on either side of the ”diagonal” because of the symmetry present in the rectangle

across the diagonal, so by finding the area of the one of the triangle shaped halves of

the parallelogram, we can deduce the area of the parallelogram shaped empty space.

The intersection point between the purple parallelogram’s line segment and the pink

triangle is (5, 5). The vertices of the triangle have coordinates (0, 7),(5, 5),(12, 0) and



when applying the shoelace theorem, we can find that the area of the empty triangle is
1
2
, so the area of the empty parallelogram is 1. This empty area of area 1 is responsible

for the paradox since without paradox the area would be 60 + 60 = 120 .

(b) Although two 5× 12 rectangles cannot really be rearranged into a 7× 17 rectangle, it

is possible to take two a× b rectangles and cut them as shown in the picture above to

make a c × d rectangle, with no paradox. What should the lengths a, b, c, d be (up to

scaling, of course)?

Solution: Let the shorter side of the rectangle be length a and the longer side of the

rectangle be length b. Now the slope of the line segments of the trapezoids that lay on

the diagonal have slope − b−2a
a

and the slope of the line segments of the triangles that

lay on the hypotenuse is −a
b
.

In order to have no paradox these slopes must be equal in order to have one line as the

diagonal of the large rectangle, so we can set them equal and solve for one variable in

terms of the other.

− b−2a
a

= −a
b

b2 − 2ab− a2 = 0

Using the quadratic equation we can find that a : b have a ratio of a : a + a
√
2 or

1 : 1 +
√
2. Now we can solve for c and d in terms of a.

c = b− a = a+ a
√
2− a = a

√
2

d = b+ a = a+ a+ a
√
2 = 2a+ a

√
2

This means that the ratio of a : b : c : d is

1 : 1 +
√
2 :

√
2 : 2 +

√
2

(c) It is also possible to take three congruent rectangles, cut each one into two pieces, and

rearrange them to form a single rectangle similar to the original three. How can we do

this?

Try to find an answer that lets you create a paradoxical decomposition of your own!

Solution:

With this arrangement (Figure 1) we can have both a valid arrangement and a para-

doxical arrangement. This is because by fixing d as a value, the paradox is dependent

on the lengths of c and e since it determines whether the slopes of the green and blue

trapezoids are the same. We can find the valid arrangement, with the valid length of
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Figure 1: Arrangement of rectangles

the segments and then change the ratio of c : e slightly to create the different but ap-

proximate slopes between the green and blue trapezoids, which will create the paradox.

We can first find the ratio of a and b by using the condition that the final rectangle

and original rectangles must be similar. The length of the final rectangle is 4a and the

width is b. We can set the ratio of the length to width of the final rectangle equal to

the ratio of the length and width in the original rectangles.

2a+b
b

= b
a

If we let a = 1 then we have:

(b− 2)(b+ 1) = 0

So b = 2 since a length cannot be negative.

The value of a can be changed to anything since all the variables are dependent on a.

We can change the value of a to any value since we now know that a : b is 1 : 2 so if

we change a we can just do b = 2a to find the new b.

We can now solve for the lengths of the line segments when the arrangement is non-
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parodoxical by setting the slopes of the trapezoid equal. We can use this equation as

well as known lengths for the sums of the segments.

c+ e = 2

d+ e = 1

d+ c = 2
c−d
1

= d−e
2

Solving this system of equations yields us: c = 11
6
, d = 5

6
, e = 1

6

We can just examine the half of the rectangle under the diagonal since both halves are

symmetrical. The slopes of each of the trapezoids are m1 =
5
6
−e

2
and m2 =

c− 5
6

1
. We

can substitute e out of the first equation and we are left with:

5
6
−(2−c)

2
̸= c− 5

6

1

We know must change c and e by a small increment to create an almost invisible dif-

ference between the two trapezoid slopes. We can let e = 35
216

and c = 253
216

.

The slopes now are:

m1 = 0.3356481481

m2 = 0.337962963

m1 ̸= m2,m1 ≈ m2 which creates a paradox in the area because there is a slight concave

present between the two segments of the ”diagonal”.

Observation: A fully general solution that will work for any a and b would involve

having the width be a
√
3 and the length b

√
3 without b being dependent on a

Page 4 of 22



Problem 2

Kayla has two red boxes, two green boxes, and two blue boxes. Each of the six boxes contains

a secret number. Kayla hands the boxes to Leo and asks him to write the letters A, a, B, b,

C, and c on the boxes. We will write #A, #a, #B, #b, #C, and #c to refer to the secret

numbers inside these boxes.

From there, the boxes go to Maya, who opens the boxes and reports the differences #A−#a,

#B−#b, and #C−#c (in that order). Next, the boxes go to Nathan, who opens the boxes

and reports the sum of the numbers in the red boxes, the sum of the numbers in the green

boxes, and the sum of the numbers in the blue boxes (in that order). The resealed boxes,

along with Maya’s and Nathan’s reports, are then handed back to Kayla, who must determine

the numbers in each of the boxes.

Kayla expected Leo to label same-color boxes with the same letter, which would have made

it easy for Kayla to figure the numbers: for example, knowing #A − #a from Maya and

#A+#a from Nathan, Kayla could solve for #A and #a. However, to Kayla’s surprise, Leo

is color blind, so his labeling had nothing to do with the colors.

(a) For which of the labelings that Leo used is it still possible for Kayla to determine the

six secret numbers? (Kayla can see which colors have which labels on them.)

Solution: We can think of each of the numbers inside the boxes as variables that are

assigned a color of box and a letter label. We can let these numbers be x1, x2, x3, ...x6.

The equations Maya gives, relate numbers of the same letter labelling to each other.

The numbers Leo gives, relate numbers with the same color to each other. We can

show this relationship in a graph, with the vertices being the numbers inside the boxes.

Let the variables x1, x2, x3, .., x6 be assigned where consecutive pairs of variables are

of the same color. For example (x1, x2) are one color, (x3, x4) are another color, and

(x5, x6) are another color. These connections between colors, made by Nathan’s equa-

tions, will be green edges in the graph (Figure 2). The connection between letters,

made by Maya’s equations, will be red edges in the graph. The edges created by the

connections between letters can be changed in order to create different arrangements.

In the graph, the cycles connecting the numbers, are an independent system of equa-

tions from the rest of the cycles in the graph. This is because variables present in one

cycle will not be present in a different cycle since vertices are not shared between cycles.

This means if all the cycles in the graph are solvable, the arrangement is solvable. We

can create cases of various cycle sizes and determine if that case is valid, since if a cycle
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Figure 2: Nathan’s connections in graph

Figure 3: Graph showing there must be even amount of vertices in a cycle
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Figure 4: Variable relabelling to solve for next number

size of x is valid, all cycles of size x will be valid.

Lemma 1: All cycle sizes must be even.

Proof of Lemma 1: We can show this since each number must have only one of each

color edges connecting it and the color of an edge alternates each vertices. Thus there

must be an odd number of ”switches” between the colors to get back to the same ver-

tices which means there are an even number of vertices (Figure 3).

We can test the cases of even cycles: 2, 4, 6

We can create a matrix with the system of equations for each of these cycle sizes. In

order to see if the matrix is solvable we can try to eliminate the bottom most row.

Lemma 2: After the simplification of the matrix, if one of the variables is able to be

solved, the rest of the vertices are able to be solved.

Proof of Lemma 2: We can re-label the k vertices in the cycle as y1, y2, ..., yk with yi
being connected by an edge to yi+1 except for yk which is connected to y1 instead of

yk+1. Assume y1 is the variable we were able to solve for, since y1 and y2 share an

equation, y2 is able to be solved. We can then create a new labelling where the new z1
is the old y2 and new zi = yi+1 except for new zk which is old y1 (Figure 4). We can

solve for z1 and by result now solve for z2. This solving and relabelling of the variables

can be done k − 1 times to solve for the entire cycle.
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Thus by solving for one variable, we know the entire cycle can be solved.

Size 2: ( )
1 1

−1 1

Which can be simplified by doing the row operation of -R2+R1

( )
1 1

2 0

This system of equations is solvable.

Size 4: 


1 1 0 0

0 1 −1 0

0 0 1 1

−1 0 0 1

Which can be simplified by doing -R2+R1 then -R3+R2 then R4+R3




1 1 0 0

1 0 1 0

1 0 0 −1

0 0 0 0

This system of equations cannot be solved, shown by the row of zeros in R4

Size 6: 



1 1 0 0 0 0

0 1 −1 0 0 0

0 0 1 1 0 0

0 0 0 1 −1 0

0 0 0 0 1 1

−1 0 0 0 0 1
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Which can be simplified by doing -R2+R1 then -R3+R2 then R4+R3 then R5+R4

then -R6+R5 



1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 −1 0 0

1 0 0 0 −1 0

1 0 0 0 0 1

2 0 0 0 0 0

This system of equations is solvable, so the valid cycle sizes are 2 and 6.

Thus arrangements that only have cycles of size 2 or cycles of size 6 will be valid. These

arrangements are where either all pairs of letters are on same color boxes or no pairs

of letters are on same color boxes.

(b) Generalize your answer to a problem with 2n boxes of n different colors, labeled with

n different uppercase and lowercase letters.

Solution: We can think of each of the numbers inside the boxes as variables that are

assigned a color and a number. We can let these numbers be x1, x2, x3, ...x2n.

We can create a graph in the same way we did in part A, that relate the numbers in

Nathan and Maya’s equations.

Claim: Only arrangements that have cycles of size S where S ̸≡ 0 (mod 4) are solvable

Proof: Let k = ⌈(S
4
)⌉ We can split the S equations from the graph into k groups by

grouping, when possible, 4 equations together, in the same order they are shown in

the graph starting with x1. If S is not a multiple of 4, then the last group will be size

S− 4(⌈(S
4
)⌉− 1). Let the ”last group”, be the final group of equations remaining when

the entire system is split into groups of 4 besides the group that connects xS and x1

which does not have to be of size 4. We can observe the properties of these groups.

From part A, we can see that we negated the second and third equations in a group of

4 equations, which caused all the variables to cancel out when added. We can apply

this same pattern to each group, negating the second and third equations in a group.

In the last group, we can negate the second and third equations if they are present.
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Figure 5: Reduction of ith non-last group

Figure 6: 1 to k-1 th group reduction

First we observe what occurs to a size 4 group when all the equations are summed

together. The system is reduced to the two term equation x4(i−1)+1 − x4(i−1)+5, for the

ith group (Figure 6). This pattern will continue for all of the non-last groups. Excluding

x1 and x4(i−1)+5 where i = k − 1, all first terms in the reduced equations are equal to

the negative of the second term in the previous equation since x4(i−1)+5 = x4(i+1−1)+1 =

x4i+1 Thus, all the reduced equations of each non-last group when summed, will be

x1 − x4(k−2)+5 (Figure 5).

When S ≡ 0 (mod 4), the last group will be of size 4 as well and the reduced equation

of the group will be x4(k−1)+1 − x1 (Figure 6). We can see that the non-last group

simplified equation and the last group simplified equation will sum to 0, thus the cycle

does not have one solution, and either has none or infinite solutions.

Figure 7: S ≡ 0 (mod 4) reduced kth group
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Figure 8: S ≡ 2 (mod 4) reduced kth group

When S ≡ 2 (mod 4) the reduced equation of the last group will be, x4(k−1)+1 + x1

(Figure 8). When the non-last group simplified equation and this last group equation

are added, there is one valid solution, which means the cycle can be solved.

Since cycle size must be even, we have gone through all cases of remainders since even

numbers are either S ≡ 0 (mod 4) or S ≡ 2 (mod 4)
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Problem 3

Here is a curious fact you may not have known about mathematicians: when asked a yes-or-

no question, number theorists will always tell the truth, while analysts will always lie. Be

careful: if you ask someone a yes-or-no question, and they cannot answer either “yes” or

“no” to it, then the universe explodes in paradox. For example, this happens if you ask an

number theorist, “Is your answer to this question ‘no’?”

(a) What yes-or-no question can be asked to both a number theorist and an analyst to

cause the universe to explode in both cases?

Solution: Claim: ”Will a number theorist respond ”no” to this question?”

Proof: We can first examine what happens to the number theorist when they are asked

this question.

Since the number theorist can only answer either ”yes” or ”no”, if we show both of these

responses are lies and create a self-referential paradox, than the universe will explode

in paradox. If the number theorist where to answer ”yes” to the question, it would not

be the truth since the number theorist is not responding ”no”. If the number theorist

were to answer ”no”, this would also be a lie since the number theorist is actually

responding ”no”. Since both responses are lies, this question will create paradox and

cause the universe to explode.

When asking the question to an analyst, the question refers to the response from the

number theorist to the same question. We already proved that the number theorist will

not be able to have a non-paradoxical response, so analyst will not be able to answer

either since the question is asking about the response from number theorist. Since the

analyst is not able to answer, this will cause the universe to explode in paradox.

(b) To try to prevent the universe from exploding in paradox, logicians have decided to act

as paradox detectors. When you ask a logician a yes-or-no question, the logician will

answer “yes” if asking the question to a number theorist would cause the universe to

explode, and “no” otherwise. For example, if you ask a logician, “Is your answer to

this question ‘no’?” the logician will answer “yes”.

What yes-or-no question can be asked to a logician to cause the universe to explode?

Solution: Claim: ”Will logicians say yes to ”will number theorists say no to this ques-
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tion?”?”

Proof: If we ask this question to a number theorist, since they always tell the truth,

they would answer ”yes”. This is because the question ”will number theorists say no

to this question?” creates a self-referential paradox for the number theorist which is

the criteria for a logician to say ”yes”. This would be paradox, since if the number

theorist said, ”yes” to the question, it did not make the universe explode so the logician

would actually answer ”no”. If the logician answered, ”no” this would not be true since

the number theorist always tells the truth and it said that the logician will always say

”yes”. Thus this question will create a paradox, and causes the universe to explode.
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Problem 4

A group of 11 Mathcampers decided to bake a rainbow unicorn sprinkle cake with 10 slices.

Unfortunately they cannot split up the slices into smaller pieces, because they do not want

to risk upsetting the unicorn. Each Mathcamper wants a slice of the cake (but not more,

because Mathcampers aren’t greedy). Each Mathcamper helped bake the cake to some extent.

The Mathcampers have been assigned fractions x1, x2, . . . , x11 representing their share of the

credit in baking the cake, where 0 < xi <
1
10

for each i, and x1 + x2 + · · ·+ x11 = 1.

(a) How can you randomly distribute the slices of cake such that the ith Mathcamper has

a probability of exactly 10xi of getting a slice of cake?

Solution: We can approach this problem by using the probabilities of each combina-

tion of distributions of slices to the students.

Let C(i, ...) be the combination where students i, ... receive a piece of cake. Let P (i, ...)

be the probability of this combination occurring. Looking at n = 3, k = 2 we can see

that xi = P (i, ...) + P (i...) since the probability of a person getting cake is equal to

the sum of the probabilities of the combinations where they get a slice of cake, which

would be 2 combinations for each student. We can create a system of equations for this

case:

2x1 = P (1, 2) + P (1, 3)

2x2 = P (1, 2) + P (2, 3)

2x3 = P (1, 3) + P (2, 3)

Solving for P (1, 2) we get x1 + x2 − x3 = P (1, 2)

Solving for P (1, 3) we get x1 + x3 − x2 = P (1, 3)

Solving for P (2, 3) we get x2 + x3 − x1 = P (2, 3)

We can see a pattern that all the probabilities of the kids that are receiving cake are

summed, while the kids that are not receiving cake have their probability subtracted.

When creating this same system of equations for n = 11, k = 10:

P (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 − x11

P (1, 2, 3, 4, 5, 6, 7, 8, 9, 11) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x11 − x10

P (1, 2, 3, 4, 5, 6, 7, 8, 10, 11) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 − x9

P (1, 2, 3, 4, 5, 6, 7, 9, 10, 11) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x10 + x11 − x8
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P (1, 2, 3, 4, 5, 6, 8, 9, 10, 11) = x1 + x2 + x3 + x4 + x5 + x6 + x8 + x9 + x10 + x11 − x7

P (1, 2, 3, 4, 5, 7, 8, 9, 10, 11) = x1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + x10 + x11 − x6

P (1, 2, 3, 4, 6, 7, 8, 9, 10, 11) = x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x10 + x11 − x5

P (1, 2, 3, 5, 6, 7, 8, 9, 10, 11) = x1 + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10 + x11 − x4

P (1, 2, 4, 5, 6, 7, 8, 9, 10, 11) = x1 + x2 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 − x3

P (1, 3, 4, 5, 6, 7, 8, 9, 10, 11) = x1 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 − x2

P (2, 3, 4, 5, 6, 7, 8, 9, 10, 11) = x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 − x1

This pattern is present in the n = 11, k = 10 case as well which leads us to the following

claim.

Claim: We can assign probabilities to each of the possible combinations of ways to give

10 slices of cake to 11 kids. We can then create sectors on a roulette wheel for each of

the 11 combinations, with each sectors area proportional to each combinations prob-

ability. We can then spin this roulette wheel to determine which combination of kids

will receive a slice of cake. Each of these probabilities for each combination (i1, ...ik) of

kids that receive cake is (
∑n

j=1 xj)− xm, j ∈ i1, ...ik,m ̸∈ i1, ..., ik

Proof: In order to prove that this method is a valid way of distributing the cake we

must prove two things: The probabilities of all the combinations are positive and each

of these probabilities is less than one.

Each of the probabilities xi, ... > 0 in our formula for the probability of a combination

is positive, so the only thing that could make the probability negative is if the xi not

in the combination is greater than the sum of the xjs that are in the combination. If

this were the case it would be a contradiction since each xi can be at most 1
10

so the

remaining probabilities must sum to at least 9
10
.

9
10

− 1
10

> 0

This proves the the combinations must always be positive.

The sum of x1 + x2 + ...x11 is equal to 1 and each xi > 0 which means that no matter

which xi is not included in the combination it, the probability of a size 10 combination

will always be less than 1.

(b) Generalize your solution to distribute k slices to n campers, for all k and n with

n ≥ k ≥ 1.

Solution: Claim: We can assign probabilities to each of the possible combinations of

ways to give k slices of cake to n kids. We can then create sectors on a roulette wheel

for each combination with an area proportional to its probability. We can then spin
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this roulette wheel to determine which group of kids will receive a slice of cake. Each

of the probabilities of combination C(i, ..) is given by the formula:

k

(n−1
k−1)

((
∑n

j=1 xj)−
(n−2
k−2)
(n−2
k−1)

(
∑n

m=1 xm)), j ∈ i1, ...ik,m ̸∈ i1, ..., ik

Proof: To prove this we must prove that each of the probabilities of the combinations

are less than 1 and that each probability is positive.

If n−1
n−k

+ (
∑n

j=1 xj)− (
∑n

m=1 xm) < 0

this is a contradiction to part a so the probability must be positive.
n−1
n−k

+(
∑n

j=1 xj)− (
∑n

m=1 xm) is the largest probability, and was proven to be less than

one in part a, so the probability is always less than one.

(c) Suppose that, in the setup of part (b), you do not know the value of k (the number of

slices). Instead, you will put the Mathcampers in a random order, according to some

strategy, and then serve slices of cake in that order until the cake runs out. Is there a

way to do this so that for each i, the ith Mathcamper will have a probability of exactly

kxi of getting a slice of cake—no matter what k turns out to be? (You may still assume

that we have 0 < xi <
1
k
for all i, and x1 + · · ·+ xn = 1.)

Solution: Observation:We can approach this problem by using the probabilities of the

each permutation available instead of each combinations, since the order in which the

kids are in line is significant.
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Problem 5

“Half stitching” is a form of embroidery which makes images out of diagonal stitches in a

square grid. Our images will all be created from a single thread, which alternates traveling

in straight lines (called stitches) along the front and the back of the grid:

• The front of the grid is where the image is formed. Here, each stitch goes from a point

(x, y) either to (x+1, y+1) or (x− 1, y− 1). We say that we stitch a square if a stitch

on the front follows its diagonal (from top right to bottom left or from bottom left to

top right).

• The back of the grid is not part of the image. Here, each stitch can follow any straight

line—but it must travel a positive distance, because if you end a stitch where it started,

it will unravel.

This problem is about minimizing the total length of thread needed to stitch a given pattern.

For example, Figure 9e and Figure 9f (with front stitches in red and back stitches in blue)

have the same pattern stitched, but the thread is 2
√
2 + 2

√
5 units long in the first case and

only 2
√
2 + 2 units long in the second case.

(a) A 3× 4 grid (b) A comb with 4 teeth (c) A tall comb with 4 teeth

(d) A wide comb with 3 teeth (e) Two example stitches (f) Two example stitches

Figure 9: Diagrams for problem 5

(a) Show that the minimum length of thread (front and back) needed to stitch every square

in an m× n rectangular grid is mn(
√
2 + 1)− 1. An example with m = 3 and n = 4 is

shown in Figure 9a.

Solution: We can create a graph that is representative of a stitched pattern (Figure

10).

Each vertices/node in the graph represents a front diagonal stitch and each node has

two connecting edges to another node. The two connecting edges between nodes in the

graph represent the shortest distance from stitch a to stitch b on either end of a and b
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Figure 10: Graph representation of stitched pattern

’s stitch. We can notice that each vertices must be visited at least once since we need

all the diagonal stitches represented by each node to make the embroidered pattern.

Each of the mn vertices also represents
√
2 traveled in order to create the front diagonal

stitch.

The restriction of needing alternating front stitches and back stitches is irrelevant with

this approach since we can assign each node to be the front stitches, and the connecting

edges between nodes to be the back stitches. This means edges will not be allowed to

be traversed twice since a stitch will come undone if two back stitches are in the same

place. Our problem is now reduced down to: What is the shortest path to traverse all

the vertices? The: length of the shortest path + mn
√
2 will be the shortest length of

thread needed to create the pattern.

Since we need to visit all the vertices without traversing the same edge twice we must

visit at least mn− 1 edges since it takes at least mn− 1 edges to connect mn vertices.

This can be done for this stitch in particular by starting at the top leftmost vertex,

travelling down to the bottom most left vertex, going one right to the next column,

going up the column to the top vertex, going right to the next column and repeating

the pattern until you have travelled mn vertices (Figure 11).

We can also observe that the minimum length from stitch a’s bottom vertex to its

adjacent stitch b is equal to the minimum distance between stitch b starting from a’s

upper vertex. This is because all the diagonals are parallel so as you traverse the stitch,
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Figure 11: Graph representation with lengths and sample traversal path

Figure 12: Graph representation for comb pattern

the distance between two stitches stays the same. The graph can now be simplified

further as well by reducing the two edges between each vertices to one (Figure 11).

Since each of the diagonals are spaced one unit apart, the minimum distance between

each of the vertices is 1. This means all our edges will be of length 1.

Our path length now is 1(mn− 1) and the length of our front stitches that come from

each of the vertices is mn
√
2 so the total length of thread we would need to make the

stitch is: 1(mn− 1) +mn
√
2 = mn(

√
2 + 1)− 1

(b) A comb with n teeth is a pattern of width 2n−1 and height 2 that stitches every square

in the bottom row and every other square in the top row; an example of this pattern

with n = 4 is shown in Figure 9b. What is the minimum length of thread (front and

back) needed to stitch this pattern, in terms of n?

Solution: We can create the graph representation of this stitch as well (Figure 12).

When n > 1 the graph has a repeating shape with both lengths of 1 and
√
2 as edges.

This changes the simplified problem from ”What is the minimum path to connect the
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vertices?” to ”Which path reduces the total amount of
√
2 edges traversed?”

When n > 1, the vertices that represent the teeth of the comb in row two of the graph

have at most one length 1 edge and either one or two
√
2 edges which means that when

traversing to and from these vertices, the minimum edge length you can have is 1+
√
2

unless the vertices is a start or end of the traversal. If a row two vertices is a start or

end point of the traversal of the graph then the minimum edge length is 1 since it only

needs one edge to either travel to it or away from it. That means in order to minimize

the edge length, row 2 vertices must be our start and end points when traversing the

graph. Only the starting vertices will need an edge length connecting it since an end

vertices does not need to connect to another node via an edge since all vertices have

already been traversed. All non-row two vertices will be connected to another vertices

with a consecutive length 1 stitch since every non-row two vertices has two length 1

edges connecting to it.

The amount of front stitches or vertices V in a comb pattern of size n is V = 2+3(n−1).

The amount of edges needed to connect V vertices is V − 1 edges or 1 + 3(n− 1).

The amount of teeth in the pattern or row two vertices in the graph for each n is n+1.

The number of
√
2 edges will be (n + 1) − 2 = n − 1. The number of length 1 edges

will be 1 + 3(n− 1)− (n− 1).

That means our minimum length would be:

1 + 3(n− 1)− (n− 1) + (n− 1)
√
2 = 2n− 1 +

√
2(n− 1)

(c) A tall comb with n teeth is a pattern of width 2n− 1 and height 3 that stitches every

square in the bottom row and every other square in the top two rows; an example of

this pattern with n = 4 is shown in Figure 9c. What is the minimum length of thread

(front and back) needed to stitch this pattern, in terms of n?

Solution: We can minimize this problem to the same problem in part b of, how do we

minimize the amount of
√
2 edges we travel on. We can notice that on the top right

and top left most vertices on any tall comb, the only edges connecting it are of length√
2 (Figure 13). This means we should set the top most corners as our start and end

points to the traversal since that will reduce the use of two
√
2 edges to travel to and

from that vertices and instead we would only need one. The end point will not need to

have a consecutive edge in the traversal since there is no need to keep traversing the

graph after travelling to all the vertices. The row 3 vertices that are not the corners,

will require the use of at least one
√
2 edge since it has only one length 1 edge and two√

2 edges. The rest of the vertices have at least two length 1 edges so the rest of the
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Figure 13: Graph Representation of tall comb

edges will be length 1.

There are 4n− 1 total vertices, so to traverse through all the vertices there needs to be

4n− 2 edges.

There are n − 2 row 3 vertices that will use at least one
√
2 edge. The rest of the 3n

edges will have length 1 stitch. Each of the 2n + 2n − 1vertices is a
√
2 length front

stitch. This means the minimum length of thread is:

((n− 2) + 2n+ 2n− 1)
√
2 + 3n = 3n+ (5n− 3)

√
2

(d) A wide comb with n teeth is a pattern of width 5n− 4 and height 2 that stitches every

square in the bottom row and every fifth square in the top row; an example of this

pattern with n = 3 is shown in Figure 9d. What is the minimum length of thread

(front and back) needed to stitch this pattern, in terms of n?

Solution: We can minimize this problem to the same problem in part b: how do we

minimize the amount of
√
2 edges we travel on? We can notice that on the row two

vertices there are only two edges connecting the vertices to other vertices. One of these

lengths is 1 and the other
√
2. In order to minimize the amount of

√
2 edges travelled

we can set the end point of the traversal to a corner edge and the start of the traversal

to a corner edge. This is because these two vertices will never be forced to connect to

another vertices with the length
√
2 edge since they only connect to one other vertices

and can use the length 1 edge. The end vertices of the traversal does not need to have a

consecutive edge in the traversal as stated in part (c). The rest of the row two vertices

are forced to be connected via their
√
2 edge since they only have one length 1 edge

and 1
√
2 edge and they have to connect to two vertices.

There are 6n − 4 vertices so there is at least 6n − 5 edges needed to connect all the

vertices.

There are n−2 row 2 vertices that use one
√
2 edge, 5n−3 vertices that use a length 1

edge, and 6n− 4 vertices that have a
√
2 front stitch. This means the minimum length

of thread is (n− 2 + 6n− 4)
√
2 + 5n− 3 = 5n− 3 + (7n− 6)

√
2

(e) Can you prove anything in general about the minimum length of thread needed to

stitch a pattern?
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Solution: When the pattern is turned into a graph, the vertices with the largest length

edge that is forced to be used, will be assigned as the last vertices in the traversal. That

means the stitch that corresponds with that vertices will be the last stitch made when

creating that pattern.

Proof: The last node in the traversal of the graph does not to connect to any other

nodes so there will be no consecutive edge coming from this vertices. When finding the

minimum length of thread, it is minimizing long length edges, and since this edge was

going to be the longest and now it is not, this vertices must be the last vertices.
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